Система движения. Поддержание позы и движения животных. Как нагрузка влияет на развитие утомления мышц и как быстро восстановить силы? В какой последовательности наступает утомление мышечных волокон

Главная / Все о беге

Временное понижение работоспособности целого организма, органа или ткани, наступающее после работы, называют утомлением.

Утомление исчезает после более или менее продолжительного отдыха. Утомление изолированной мышцы легче можно наблюдать, если воздействовать на нее частыми раздражениями.

Высота сокращений такой мышцы постепенно уменьшается, пока мышца, наконец, не перестанет сокращаться. Чем чаще наносится раздражение, тем быстрее наступает утомление (рис.).

Изучение утомления у человека производится при помощи специального прибора - эргографа (рис. 2).

Рис. БЫСТРОТА НАСТУПЛЕНИЯ УТОМЛЕНИЯ ПРИ РАЗЛИЧНОЙ ЧАСТОТЕ РАЗДРАЖЕНИЙ 1-сокращение с частотой-один раз в секунду; 2 — сокращения с частотой один раз в 2 секунды: 3 - сокращения с частотой один раз в 4 секунды.

Эргограф представляет собой прибор, в котором фиксируются предплечье, кисть, II и IV пальцы исследуемого. К среднему пальцу подвешивают груз и исследуемому предлагают поднимать и опускать его, сгибая и разгибая палец. Изменяя ритм работы, величину груза или и другое, можно изучить явление утомления, наступающее у человека в разных условиях.

Кривая, которая при этом получается, называется эргограммой (рис. 3).

Для изучения рабочих движений И. М. Сеченовым был сконструирован специальный эргограф, при помощи которого исследуемый воспроизводил движения, совершаемые при пилке ручной пилой.

Для объяснения утомления было выдвинуто несколько теорий. Одни объясняли утомление тем, что в результате работы энергетические запасы истощились, другие же предполагали, что причиной утомления является засорение мышц продуктами распада. Однако ни одна из выдвинутых теорий не пред ставляла исчерпывающего объяснения явлений утомления. При усиленной работе в мышце действительно образуются продукты распада, в частности молочная кислота, которая в значительной степени влияет на наступление утомления в работающей мышце, происходит расходование энергетических запасов и т. д., но ни один из этих процессов в отдельности не может быть положен в основу объяснения утомления. Все эти теории игнорировали роль нервной системы при наступлении утомления.

Между тем исследованиями И. М. Сеченова, И. П. Павлова, Н. Е. Введенского и А. А. Ухтомского было показано, что в длительном сохранении работоспособности и в наступлении утомления решающую роль играет центральная .

Рис. 2 Эргограф, 1 — цилиндр для записи, 2- записывающий рычажок, 3- стойка, 4- держалка для руки, 5 — груз

Наступление утомления мышцы при рефлекторном влиянии в специальном опыте наблюдал Н. Е. Введенский. Этот опыт был поставлен на такой мышце, сокращение которой можно было рефлекторно вызвать раздражением двух разных центростремительных нервов. Раздражением одного из этих нервов достигалось утомление мышцы. Когда становилось очевидным, что мышца утомилась, наносилось раздражение другому центростремительному нерву. На это раздражение мышца отвечала сокращением прежней силы. Отсюда был сделан вывод, что утомление в первую очередь наступает не в мышце, а в центральной нервной системе (нервное волокно практически неутомляемо).

Влияние коры головного мозга было показано в опыте, когда исследуемому, совершающему значительную работу, внушалось, что он выполняет легкую работу; при этом расход энергии уменьшался, хотя интенсивность работы не понижалась.

При совершении же легкой мышечной работы энергетические затраты резко возрастают, если исследуемому внушить, что он выполняет тяжелую физическую работу.

Влияние вегетативной нервной системы, в частности ее симпатического отдела, на утомление было показано советскими учеными Л. А. Орбели и А. Г. Гинецинским.

После того как было вызвано утомление мышцы лягушки, раздражали симпатическую нервную систему и наблюдали восстановление работоспособности мышцы. Раздражение симпатического нерва вызывает изменение обменных процессов, протекающих в мышце, в результате чего наступает восстановление работоспособности.

Таким образом, впервые было доказано влияние вегетативной нервной системы на процессы, которые протекают в скелетной мышце.

Рис 3. Эргограмма

Симпатическая , играющая, как было описано выше, важную роль, сама находится под непосредственным регулирующим влиянием центральной нервной системы. Любая мышечная деятельность возможна только благодаря координации со стороны центральной нервной системы, куда в свою очередь непрерывно поступает целый ряд импульсов от рецепторов разных органов, принимающих участие в работе.

Широко распространено мнение, что наилучшим способом восстановления работоспособности является полный покой. Однако исследования И. М. Сеченова доказали ошибочность такого представления. Он сравнивал восстановление работоспособности утомленной в результате длительной работы правой руки в условиях полного отдыха, а также в условиях, ко гда левая рука производила определенную работу, т. е. во вре мя активного отдыха. Оказалось, что работоспособность восстанавливается быстрее при активном отдыхе, чем при пассивном.

Предполагается, что поток импульсов, который направляется от работающей руки в центральную нервную систему, действует возбуждающе на утомленные или впавшие в торможение участки центральной нервной системы.

Во время занятий спортом, ваше тело испытывает большие физические нагрузки – все это изменяет состояние ваших мышц. После интенсивной работы они утомляются и изменяются. В этой статье я расскажу вам, как нагрузка влияет на развитие утомления мышц, какие процессы происходят в мышечной ткани и как это влияет на тренировки. Эти знания должны быть в копилке каждого, кто занимается бодибилдингом, будь то любитель или профессионал, девушка или мужчина.

Это физиологический процесс, вызывающий снижение работоспособности мышечных волокон, из-за выполнения интенсивной или продолжительной работы, при этом уменьшается их длина, сила и скорость сокращения.

После снятия нагрузки остаются частично сокращёнными и могут восстанавливать свою работоспособность после отдыха.

Механизм утомления мышц

Для получения энергии в мышцах происходит расщепление молекулы аденозинтрифосфата (АТФ) до аденозинфосфата (АДФ). В результате этой реакции выделяется энергия, которая используется для сокращения. Мышечная ткань постоянно воспроизводит молекулы АТФ, что позволяет ей работать без остановки.

Если кислород поставляется к мышцам своевременно, то они синтезируют АТФ из глюкозы, выделяя в процессе реакции углекислый газ и воду. Если кислорода недостаточно – реакция протекает не полностью. В результате синтеза образуется побочный продукт – молочная кислота (лактат), которая накапливается и вызывает быстрое нарастание усталости.

С чем связано утомление мышц

Ученые выявили несколько причин, вызывающих мышечную усталость:

  1. Истощение энергетических ресурсов – запасов углеводов, которые содержатся в мышцах в виде гликогена.
  2. Накопление продуктов обмена веществ в тканях.
  3. Нарушение передачи нервных импульсов в центральной нервной системе и снижение нервно-мышечной связи.

Какая нагрузка влияет на развитие мышечного утомления

Чем интенсивнее работает мышца, тем быстрее она утомляется.

Интенсивность может быть двух типов:

  • Высокая скорость движений (например, в спринтерском беге).
  • Большое усилие, необходимое чтобы поднять вес (в тяжёлой атлетике или пауэрлифтинге).

Напротив легкая, не интенсивная нагрузка может поддерживаться организмом в течение многих часов. Примером такой работы является ходьба. В этом случае энергия к мышцам поставляется аэробной системой через окисление жиров кислородом.

Виды утомления мышц

  • Энергетическое утомление.

В нашем организме есть несколько механизмов синтеза энергии:

  • Фосфатный механизм синтеза АТФ использует имеющиеся запасы фосфатов в мышцах. Он быстро заново синтезирует АТФ из АДФ, используя высокоэнергетическое вещество креатинфосфат (КрФ). Но запасов КрФ хватает всего на 8-10 секунд работы с максимальной интенсивностью.
  • После истощения креатинфосфата для синтеза фосфатов мышцы начинают сжигать углеводы. Глюкоза откладывается в мышечной ткани и печени в виде гликогена. У людей разной тренированности количество гликогена различается, но в среднем его хватает на 60-90 минут интенсивных занятий. Энергия из углеводов может синтезироваться как с участием кислорода – аэробно, так и без него – анаэробно.

После истощения углеводных запасов спортсмен переходит на энергообеспечение только за счёт расщепления жиров, при этом он теряет способность выполнять упражнения с высокой интенсивностью. В этот момент происходит снижение скорости и силы мышц.

  • Жиры могут расщепляться только в присутствии кислорода. Когда мышечные волокна питаются только за счёт жиров, они уже не могут выполнять движения максимальной мощности. Зато длительную лёгкую работу они могут делать ещё очень долго, потому что запасы жира в организме практически неисчерпаемы.

Энергетическая усталость возникает после 60-90 минут высокоинтенсивной тренировки, она связана с исчерпанием запаса гликогена, появляется слабость в ногах и руках, в таких условиях очень сложно продолжать занятия. При наступлении энергетической усталости можно быстро восстановить работоспособность мышечной системы – достаточно насытить организм быстрыми углеводами (сахар или глюкоза).

  • Утомление из-за накопления продуктов обмена веществ.

Если при небольших физических нагрузках, например при ходьбе, питание мышц может осуществляться полностью за счёт сжигания жира. То при увеличении интенсивности движений в энергообмен включается механизм расщепления углеводов.

С дальнейшим ростом интенсивности скорость окисления углеводов увеличивается, но из-за нехватки кислорода расщепление части глюкозы проходит анаэробно. При этом образуется молочная кислота (лактат), которая накапливается в мышечной ткани. Такие процессы часто происходят, когда спортсмен, в забеге на длинную дистанцию, резко увеличивает темп на финишной прямой.

Накопление лактата быстро приводит к усталости. Возникают болезненные ощущения. Из-за высокой концентрации молочной кислоты повреждаются стенки клеток, а их содержимое попадает в кровь. Высокое содержание лактата в мышечной ткани нарушает координационные способности, приводит к микротравмам и уменьшает скорость обмена веществ.

  • Нервно-импульсное утомление.

Этот вид мышечной усталости заключается в изменении процесса передачи импульса в нервно-мышечном соединении. Это связано с невозможностью долго поддерживать высокую производительность нервной клетки, она снижается под воздействием нагрузки. Если уровень интенсивности долго сохраняется на высоком уровне, нервная клетка блокируется и перестаёт передавать нервные импульсы мышце.

Симптомы мышечного утомления

С увеличением усталости снижается высота и скорость сокращения мышц. Спортсмен начинает медленнее выполнять взрывную работу. Снижается скорость бега, высота прыжков, уменьшается частота и амплитуда движения. Наблюдается снижение координации, нарушается техника выполнения упражнения.

Это связано с тем, что волокна белых мышц, которые используют энергию углеводов, перестали получать питание или закислились из-за накопления молочной кислоты.

Возможные последствия и осложнения

Высокая концентрация лактата , возникают микроразрывы волокон, что может стать причиной травмы. Высокое содержание молочной кислоты снижает восстановление креатинофосфата и уменьшает скорость расщепления жиров.

Мышцам необходимо давать достаточно времени для , в противном случае может возникнуть перетренированность.

Признаки перетренированности:

  • Длительное восстановление пульса до нормальных значений после нагрузки и учащённое сердцебиение в состоянии покоя.
  • Быстрое наступление усталости, снижение спортивных показателей.
  • Отсутствие аппетита.
  • Боли в мышцах, связках и суставах.
  • Повышенная нервозность и чувство тревоги.
  • Бессонница.
  • Повышенная потливость.

Как следствие снижается интерес к занятиям, повышается риск травм, снижается иммунитет. Для восстановления организма требуется резко снизить интенсивность тренировок в течение 1-2 недель.

Как устранить мышечную усталость

Чтобы полностью восстановить тонус мышцы после интенсивной тренировки организму требуется от 24 до 96 часов отдыха.

Чтобы вывести 95% молочной кислоты из мышцы организму может потребоваться более 1 часа 20 минут пассивного отдыха. Чтобы ускорить этот процесс нужно выполнять лёгкую работу. Например, непрерывный бег трусцой позволит в два раза быстрее избавиться от лактата, чем при пассивном отдыхе.

Это позволит вернуть исходную длину мышечного волокна и расслабить его.

Если вы обнаружили у себя признаки перетренированности, вам следует предпринять следующие действия:

  • Исключить умственное напряжение.
  • Заняться приятными делами, развлечься, прогуляться на свежем воздухе.
  • Принять ванну, сходить в баню, сделать массаж.
  • Сократить интенсивность тренировок не менее чем на 50% в течение следующей недели.

Нельзя продолжать занятия с той же интенсивностью что и раньше. Не рекомендуется пассивный отдых, в этом случае для восстановления потребуется вдвое больше времени.

Спортивное питание и продукты для снятия усталости

  1. Аминокислоты быстро восстанавливают разрушенные во время тренировок мышцы, эти соединения участвуют во всех физиологических процессах. , увеличит выработку нужных гормонов и улучшит общее состояние организма.
  2. Креатин – вещество, которое непосредственно участвует в энергетическом обмене АТФ и АДФ. Креатин нейтрализует кислоты, вызывающие усталость, в том числе молочную. Согласно научным исследованиям и отзывам .
  3. Для быстрого восстановления спортсменам нужно употреблять в пищу достаточное количество продуктов насыщенных витаминами и минералами, в том числе: сырые овощи, фрукты и зелень.
  4. Рыбий жир содержит полиненасыщенные жирные кислоты омега-3, которые участвуют в деятельности всех систем организма, начиная от головного мозга и вплоть до восстановления суставов.

Влияние усталости на иммунную систему

Физические нагрузки, инфекции и иммунитет тесно связаны между собой. Умеренные аэробные тренировки стимулируют иммунную систему, а продолжительные изнурительные занятия спортом напротив подавляют её. Физические перегрузки могут приводить к повреждению тканей и создавать очаги воспаления.

При превышении интенсивности тренировок 70% от максимальных возможностей, их положительное влияние на иммунитет сходит на нет.

Заключение

Мышечное утомление это естественный процесс, который защищает мышцы и нервную систему от разрушения. Мы испытываем усталость из-за истощения питательных веществ, накопления молочной кислоты и уменьшения нервно-мышечных связей. Очень важно во время занятий бодибилдингом прислушиваться к своим мышцам не перетренировываться, соблюдать режим сна и питания. Только в этом случае можно получить максимальные результаты от тренировки.

Если вас заинтересовала эта статья, делитесь ей в социальных сетях. Подписывайтесь на мою группу Вконтакте и Facebook, там вы найдёте тренировочные комплексы, советы по спортивному питанию и рекомендации по созданию красивого и привлекательного тела.

Вконтакте

Спортсмены постоянно подвергаются различным типам , и некоторые из них превышают порог переносимости. В результате снижается , что оказывает негативное влияние на общую результативность. Когда спортсмены выходят за пределы собственных физиологических возможностей, возникает риск накопления усталости, при этом чем больше усталость, тем сильнее проявляется негативный эффект от тренировок, который выражается в низких темпах , ухудшении и снижении вырабатываемой энергии.

Центральная нервная система отвечает за два основных процесса: возбуждение и блокировку. Возбуждение является стимулирующим процессом для физической активности, в то время как блокировка является процессом ограничивающим. Во время тренировки оба процесса сменяют друг друга. В результате стимулирования центральная нервная система посылает нервный импульс к работающей мышце, вызывая ее сокращение. Скорость, мощность и частота импульса напрямую зависят от состояния центральной нервной системы. Эффективность нервных импульсов возрастает, когда преобладает возбуждение (управляемое), вследствие чего спортсмен добивается хорошего результата. Когда утомление блокирует нервную клетку, мышцы сокращаются медленнее и слабее. Таким образом, электрическое стимулирование центральной нервной системы определяет количество задействованных и передачу нервных импульсов, которая, в конечном итоге, оказывает влияние на силу сокращения мышц.

Производительность нервной клетки невозможно поддерживать очень долго, и она снижается под влиянием напряжения соревновательного или тренировочного процесса. Если высокий уровень интенсивности сохраняется, нервная клетка переходит в состояние блокировки для защиты от внешней стимуляции. Следовательно, утомление необходимо рассматривать как механизм самозащиты, предназначенный для недопущения ущерба для .

Кроме того, интенсивные упражнения приводят к развитию ацидоза, который, в первую очередь, вызывается накоплением в . Высокий уровень ацидоза может оказывать негативное влияние на выделение кальция, необходимого для . В сущности, возбудительный нервный импульс может достигать мышечной мембраны, но будет заблокирован мембраной выделения .

Симптомы мышечного утомления

Тренеры должны следить за симптомами мышечного утомления. Опытный тренер всегда сможет заметить признаки утомления в силовых и скоростных видах спорта. Реакция спортсмена на взрывную деятельность замедляется, наблюдается легкое нарушение координации, и увеличивается продолжительность фазы контакта при , скачках и отскоках, и . Основой данных видов деятельности является стимулирование , на которые утомление оказывает большее влияние в сравнении с . Таким образом, даже незначительная блокировка центральной нервной системы оказывает влияние на задействование мышечных волокон.

Как было продемонстрировано в работах Марсдена, Медоуза и Мертона , частота работы в конце 30-секундного сокращения при максимальной интенсивности снижается на 80 процентов в сравнении с частотой на момент начала сокращения. Аналогичные результаты были продемонстрированы в работах Де Лука и Эрим и Конвит и др. : по мере увеличения продолжительности сокращения, увеличивается активизация крупных двигательных единиц, при этом частота работы находится ниже обычного порога частоты активизации.

Результаты, продемонстрированные в указанных работах, должны насторожить сторонников теории увеличения силы (в особенности в американском футболе) исключительно за счет выполнения каждого комплекса до полного изнеможения. Об изъянах этой широко распространенной методики свидетельствует факт снижения рабочей частоты с каждым последующим повторением.

По мере выполнения сокращений истощаются источники энергии, результатом чего является более продолжительное время отдыха двигательной системы и снижение частоты сокращения мышцы, что, в свою очередь, приводит к снижению выработки энергии. Предположительно причиной такого нервно-мышечного поведения является утомление. Реальные факты должны сигнализировать практикующим специалистам о том, что непродолжительных перерывов на отдых (обычно в течение одной-двух минут) между двумя комплексами при максимальной нервной нагрузке недостаточно для расслабления и восстановления нервно-мышечной системы с целью обеспечения высокого уровня активизации при выполнении последующих комплексов.

При анализе функциональности центральной нервной системы во время утомления тренерам следует принимать во внимание утомление, ощущаемое спортсменом, и физические возможности спортсмена, которые достигаются во время тренировки. Когда физические возможности превышают уровень утомления, ощущаемого во время тестов или соревнований, увеличивается мотивация и, как следствие, способность преодолевать утомление.

Таким образом, следует развивать указанную способность преодолевать утомление во время соревнований, в особенности для тех видов спорта, в которых наблюдается высокая зависимость интеллектуальных качеств от утомления, например, в командных видах спорта, в видах спорта, где применяются ракетки, и в спортивных единоборствах.

Недостаток аденозитрифосфата, креатинфосфата и гликогена

В зависимости от вида деятельности, мышечное утомление возникает при истощении запасов мышечного или креатинфосфата в работающих мышцах . Результат данного явления очевиден: работоспособность мышцы снижается.

Для краткосрочных высокоинтенсивных видов деятельности, таких как выполнение комплексов с небольшим количеством повторений или бег на короткую дистанцию, непосредственными источниками энергии для сокращения мышц являются аденозинтрифосфат и креатинфосфат. Истощение запасов данных веществ в мышцах ограничивает способность мышцы к сокращению (Karlsson и Saltin, 1971). Тем не менее во время отдыха происходит активная работа , целью которой является восстановление фосфатов за счет процесса, который называется аэробным фосфорилированием. Как следствие, даже для скоростно-силовых видов спорта необходима соответствующая аэробная среда .

В мышце с пониженным содержанием гликогена в результате, например, продолжительной деятельности, носящей периодический характер, которая является типичной для командных видов спорта, скорость потребления аденозинтрифосфата превышает скорость его выработки. Результаты исследований показывают, что гликоген является жизненно необходимым веществом для обеспечения возможности мышцы поддерживать высокий уровень силы и что выносливость во время продолжительной активности при средней и высокой нагрузке непосредственно зависит от количества гликогена в мышцах до начала упражнения . Итак, причиной утомления может также стать недостаток гликогена в мышцах .

Во время продолжительной работы при субмаксимальной нагрузке, например, при тренировке мышечной выносливости средней и большой продолжительности, источниками энергии являются жирная кислота и глюкоза. В ходе данного процесса также необходим кислород. При ограниченном поступлении кислорода вместо окисления углевода происходит окисление жирной кислоты. Максимальное окисление свободной жирной кислоты определяется притоком жирной кислоты к работающей мышце и аэробным состоянием спортсмена, поскольку аэробная тренировка повышает как поступление кислорода, так и окисляемость жирной кислоты . Таким образом, причинами мышечного утомления являются недостаток кислорода, слабый уровень транспортировки кислорода и ненадлежащий кровоток .

Накопление молочной кислоты

После нескольких секунд максимального сокращения начинает использовать мышечный гликоген для производства , при этом начинает накапливаться . Совокупное одновременное снижение уровня креатинфосфата и накопление молочной кислоты снижает способность мышцы к максимальному сокращению . Это имеет важное значение для движений, требующих быстроты или силы сокращения, поскольку их основой является сокращение мощных быстро сокращающихся волокон. Такие действия являются , они выполняются за счет анаэробной энергии и вызывают повышение уровня выработки и накопления молочной кислоты. В ходе выполнения высокоинтенсивных комплексов до (при высокой нагрузке), если общая продолжительность действий, осуществляемых под напряжением во время комплекса, превышает восемь секунд, быстро сокращающиеся волокна вырабатывают большое количество лактата. При этом блокируется любое непосредственное стимулирование, исходящее от центральной нервной системы. Таким образом, последующий высокоинтенсивный комплекс может выполняться только после более продолжительного периода отдыха.

Биохимический обмен, происходящий во время сокращения мышц, приводит к высвобождению ионов водорода, что, в свою очередь, вызывает ацидоз или еще не полностью изученное «лактатное утомление», которое, по всей видимости, определяет точку истощения . Чем активнее мышца, тем выше концентрация ионов водорода и, соответственно, тем выше уровень ацидоза крови. Ионы водорода также стимулируют высвобождение гормона роста из аденогипофиза . Несмотря на название, основной эффект, оказываемый всплеском гормона роста в результате метаболически интенсивной тренировки, заключается в усилении липолиза (сжигания жира) , который является одной из причин эффективности лактатных тренировок при снижении веса. Среди других причин можно выделить высокий расход калорий в минуту и повышенное потребление кислорода после выполнения упражнений, которые усиливают обмен веществ, продолжающийся до 24 часов. Несмотря на широко распространенное убеждение в обратном, всплеск гормона роста или, по сути, , вызванный упражнениями, не оказывает влияния на .

В результате дезактивации тропонина, являющегося одним из компонентов белков, повышенный ацидоз также блокирует связующую способность кальция. Поскольку тропонин принимает активное участие в сокращении мышечной клетки, его дезактивация может привести к возникновению утомления . Дискомфорт, провоцируемый ацидозом, также может быть одной из причин психологического утомления . Тем не менее мышечный ацидоз не является причиной болезненного ощущения в мышцах после тренировки. На самом деле, как показано в таблице, удаление лактата происходит достаточно быстро, поскольку он окисляется мышечными волокнами, а также трансформируется печенью обратно в глюкозу (посредством цикла Кори).

Время, необходимое для удаления лактата из крови и мышц

Время (мин)

Читайте также

Источники

  1. Enoka, R.M., and Stuart, D.G. 1992. Neurobiology of muscle fatigue. Journal of Applied Physiology 72 (5): 1631-38.
  2. Schillings, M.L., et al. 2000. Central and peripheral aspects of exercise-induced fatigue, www.med.uni-jena. de/motorik/pdk/schillings .pdf.
  3. Noakes, T.D., et al. 2005. From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans: Summary and conclusions. British Journal of Sports Medicine 39:120-24. doi:10.1136/bjsm.2003.010330.
  4. Weir, J.P., et al. 2006. Is fatigue all in your head? A critical review of the central governor model. British Journal of Sports Medicine 40 (7): 573-86.
  5. Bigland-Ritchie, B., Johansson, R., Lippold, O.C.J., and Woods, J.J. 1983. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of Neurophysiology 50 (1): 313-24.

Работоспособность мышц

Она зависит от ряда факторов и условий:

1) от правильного чередования работы и отдыха; оптимальный ритм движения обеспечивает лучшие условия для окислительно-восстановительных процессов в мышцах и предупреждает утомление;

2) от нормального функционирования всех систем организма, особенно центральной и симпатической нервной системы, эндокринных влияний, синаптической передачи возбуждения с нерва на мышцу, правильного содержания и кормления животных;

3) продуманный тренинг и правильное управление животными обеспечивают наилучшие условия функционирования всех систем организма и способствуют выработке полезных условных рефлексов при выполнении конкретной задачи;

4) работоспособность мышц улучшается в процессе тренировки, однако работающая мышца и организм утомляются.

Утомление мышцы

В целом организме при работе раньше нервномышечных образований утомляются нервные центры. При утомлении мышцы нарушается синаптическая передача возбуждения с нерва на мышцу. Так, если мышца в результате длительной работы уже не отвечает новым сокращением на раздражение двигательного нерва, то ее можно заставить сократиться, поднеся электроды от стимулятора непосредственно к мышце. Следовательно, утомление в первую очередь, связано с нарушением передачи возбуждения с нерва на мышцу, то есть с недостатком образования ацетилхолина в синаптических бляшках. Однако и в самой мышце происходит ряд биохимических процессов, характерных для утомления: накапливаются фосфорная кислота, связывающая ионы Са2+, молочная кислота и др.

Перегрузка

Перенапряжение мышечных усилий ведет к быстрому утомлению. Систематическая чрезмерная работа и предъявление животному непомерно высоких требований могут привести к «срыву» - быстрой утомляемости и нарушению координации движений.

Непомерная тренировка также вызывает «срыв», поэтому только своевременное предоставление животному отдыха может восстановить работоспособность. Животные, испытавшие перегрузку, долго ощущают ее последствия: у них снижается сократительная способность скелетных мышц, расширяются границы сердца и др.

При неправильном содержании животных выделяют понятия «стадное утомление». У свиней при скученном содержании, недостатке моциона и свободного передвижения, а также в связи с гиподинамией или, наоборот, частыми переменами боксов появляются симптомы повышенной возбудимости, пугливости, слабости конечностей, они не могут быстро и легко ходить и бегать; из-за выделения адаптивных гормонов (норадреналина) снижается качество мяса - «водянистая свинина».

Систематическая и интенсивная работа мускулов способствует увеличению массы мышечной ткани, такое состояние мышцы называют рабочей гипертрофией. В ее основе лежит увеличение массы цитоплазмы мышечных волокон и числа содержащихся в них миофибрилл, сопровождающееся увеличением диаметра каждого волокна. Происходит активизация синтеза нуклеиновых кислот и белков, повышается содержание веществ, доставляющих энергию сокращения (гликогена, АТФ).

Противоположное состояние рабочей гипертрофии - атрофия мышц от бездеятельности. Она возникает в тех случаях, когда скелетные мышцы в силу ряда причин бездействуют или слишком мало участвуют в двигательных актах всего тела, например при обездвиживании конечности после длительного наложения гипсовой повязки, повреждения сухожилий или нервов, отсутствия и недостаточности моциона, при клеточном содержании. Особый вид нейрогенной атрофии возникает в случаях повреждения периферических нервов, когда мышца лишается нервной импульсации и обречена на постепенное отмирание вследствие нарушения трофики. Ведущее значение в этих процессах имеет выключение афферентных импульсов.

Сила и работа мышц

Сила мышцы определяется тем максимальным грузом, который она в состоянии поднять. Эта сила может быть очень велика. Сила мышцы при прочих равных условиях зависит не от ее длины, а от поперечного сечения: чем больше физиологическое поперечное сечение мышцы, т.е. сумма поперечных сечений всех ее волокон, тем больше тот груз, который она в состоянии поднять. Чтобы иметь возможность сравнивать силу разных мышц, максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

Работа мышцы измеряется произведением поднятого груза на величину укорочения мышцы, т.е. выражается в килограммометрах или граммсантиметрах.

Мощность мышцы, измеряемая величиной работы в единицу времени, также достигает максимальной величины при средних нагрузках. Поэтому зависимость работы и мощности от нагрузки получила название правила средних нагрузок.

Утомление мышц, теории утомления изолированной мышцы и целого организма

Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха. Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами. Первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (в частности, молочная кислота, образующаяся при расщеплении гликогена), оказывающие угнетающее влияние на работоспособность мышечных волокон. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия. Другой причиной развития *утомления изолированной мышцы является постепенное истощение в ней энергетических запасов. При длительной работе изолированной мышцы происходит резкое уменьшение запасов гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для осуществления сокращения. Для изучения мышечного утомления у человека в лабораторных условиях пользуются эргографами - приборами для записи амплитуды движения, ритмически выполняемого группой мышц.

© 2024 siniy-kit.ru -- Спортивный портал - Синий кит