Адский «Футляр» для вражеских подлодок: какой будет новейшая российская торпеда. Универсальная глубоководная самонаводящаяся торпеда угст («физик») Что с торпедами для апл физик 2

Главная / Руки

Как сообщила газета "Известия", ВМФ России принял на вооружение новую торпеду "Физик-2". Как сообщается, данная торпеда предназначена для вооружения новейших подводных ракетоносцев проекта 955 "Борей" и многоцелевых атомных подводных лодок нового поколения проекта 885855М "Ясень".

До недавнего времени ситуация с торпедным оружием для ВМФ России была довольно безрадостной - несмотря на наличие современных атомных подводных лодок третьего поколения и появление новейших подводных лодок четвёртого поколения, их боевые возможности существенно ограничивались имеющимся торпедным оружием, существенно уступающим не только новым, но и уже в значительной степени устаревшим образцам зарубежных торпед. Причём не только американских и европейских, но и даже китайских.

Основной задачей советского подводного флота была борьба с надводными кораблями вероятного противника, в первую очередь с американскими конвоями, которые в случае перерастания Холодной войны в "горячую" должны были доставлять в Европу американские войска, вооружение и военную технику, различные припасы и средства материально-технического обеспечения. Наиболее совершенными в советском подводном флоте были "тепловые" торпеды 53-65К и 65-76 , предназначенные для поражения кораблей - они имели для своего времени высокие скоростные характеристики и дальность хода, а также уникальную систему лоцирования кильватерного следа, позволявшую "улавливать" кильватерный след вражеского корабля и следовать вдоль него до момента попадания в цель. При этом они обеспечивали полную свободу манёвра для подводной лодки-носителя после пуска. Особенно эффективной была монструозная торпеда 65-76 калибром 650 миллиметров. Она имела огромную дальность хода - 100 километров при скорости 35 узлов и 50 километров при скорости в 50 узлов, а мощнейшей 765-кг боевой части хватало, что бы нанести тяжёлые повреждения даже авианосцу (для потопления авианосца требовалось всего несколько торпед) и гарантированно потопить одной торпедой корабль любого другого класса.

Однако появление в 1970-х появились так называемые универсальные торпеды - они одинаково эффективно могли применяться как против надводных кораблей, так и против подводных лодок. Появилась и новая система наведения торпед - телеуправление. При данном способе наведения торпеды команды управления на неё передаются при помощи разматываемого провода, что позволяет легко "парировать" манёвры цели и оптимизировать траекторию движения торпеды, что в свою очередь позволяет расширить эффективную дальность применения торпеды. Однако в области создании универсальных телеуправляемых торпед в Советском Союзе не удалось добиться никаких существенных успехов, более того, советские универсальные торпеды уже тогда существенно уступали своим зарубежным аналогам. Во-первых, все советские универсальные торпеды были электрическими, т.е. приводимые в движение электроэнергией от размещённых на борту аккумуляторов. Они более просты в эксплуатации, имеют меньшую шумность при движении и не оставляют демаскирующего следа на поверхности, но в то же время по дальности и скорости хода очень существенно проигрывают парогазовым или т.н. "тепловым" торпедам. Во-вторых, высочайший уровень автоматизации советских подводных лодок, включая систему автоматического заряжания торпедных аппаратов, накладывал конструктивные ограничения на торпеду и не позволил реализовать т.н. шланговую систему телеуправления, когда катушка с кабелем телеуправления находится в торпедном аппарате. Вместо этого пришлось использовать буксируемую катушку, что резко ограничивает возможности торпеды. Если шланговая система телеуправления позволяет свободно маневрировать подлодке после пуска торпеды, то буксируемая манёвры после пуска крайне ограничивает - в таком случае гарантированно порвёт кабель телеуправления, более того, имеется и высокая вероятность его обрыва от набегающего потока воды. Буксируемая катушка также не позволяет осуществлять залповую торпедную стрельбу.

В конце 1980-х годов были начаты работы по созданию новых торпед, но из-за распада Советского Союза они были продолжены лишь в новом тысячелетии. В результате, российские подводные лодки остались с малоэффективными торпедами. Основная универсальная торпеда УСЭТ-80 имела совершенно неудовлетворительные характеристики, а имевшиеся противолодочные торпеды СЭТ-65, имевшие неплохие характеристики в момент принятия их на вооружение в 1965 году, уже морально устарели. В начале 21 века была снята с вооружения торпеда 65-76, которая в 2000 году стала причиной потрясшей всю страну катастрофы подводной лодки "Курск". Российские многоцелевые подводные лодки лишились своей "дальней руки" и самой эффективной торпеды для борьбы с надводными кораблями. Таким образом, к началу текущего десятилетия ситуация с торпедным оружием подводных лодок была совершенно удручающей - они имели крайне слабые возможности в дуэльной ситуации с вражескими подводными лодками и ограниченные возможности по поражению надводных целей. Впрочем последнюю проблемы удалось частично преодолеть путём оснащение с 2011 года подводных лодок модернизированными торпедами 53-65К, которые возможно получили новую систему самонаведения и были обеспечены более высокие характеристики дальности и скорости хода. Тем не менее, возможности российских торпед существенно уступали современным модификациям основной американской универсальной торпеды Mk-48. Флоту, очевидно, требовались новые универсальные торпеды, отвечающие современным требованиям.

В 2003 году на Международном Военно-Морском Салоне была представлена новая торпеда УГСТ (Универсальная Глубоководная Самонаводящаяся Торпеда). Для ВМФ России эта торпеда получила название "Физик". По имеющимся данным, с 2008 года на заводе "Дагдизель" велось производство ограниченных партий этих торпед для проведения испытаний на новейших подводных лодках проектов 955 и 885. С 2015 года начато серийное производство данных торпед и оснащение ими новейших подводных лодок, которые до этого пришлось вооружить устаревшими торпедами. К примеру, подводная лодка "Северодвинск", вступившая в состав флота в 2014 году изначально было вооружена морально устаревшими торпедами УСЭТ-80. Как сообщается в открытых источниках, по мере увеличения количества произведённых новых торпед, ими будут вооружаться и более старые подводные лодки.

В 2016 году сообщалось, что на озере Иссык-Куль велись испытания новой торпеды "Футляр" и что она должна была быть принята на вооружение в 2017 году, после чего производство торпед "Физик" будет свёрнуто и вместо них флота начнёт получать уже другие, более совершенные торпеды. Однако 12 июля 2017 года газета "Известия" и ряд российских информационных агентств сообщили о том, что на вооружение ВМФ России принята новая торпеда "Физик-2". На данный момент совершенно неясно, принята ли на вооружение торпеда, которую называли "Футляр" или торпеда "Футляр" - принципиально новая торпеда. В пользу первой версии может свидетельствовать то, что как сообщалось в прошлом году, торпеда "Футляр" представляет собой дальнейшее развитие торпеды "Физик". Тоже самое говорится и о торпеде "Физик-2".

Торпеда "Физик" имеет дальность хода в 50 км при скорости 30 узлов и 40 километров при скорости в 50 узлов. Торпеда "Физик-2", как сообщается, имеет увеличенную до 60 узлов (около 110 кмч) максимальную скорость за счёт нового турбинного двигателя 19ДТ мощностью 800 кВт. Торпеда "Физик" имеет активно-пассивную систему самонаведения и систему телеуправления. Система самонаведения торпеды при стрельбе по надводным целям, обеспечивает обнаружение кильватерного следа вражеского корабля на расстоянии 2,5 километров и наведение на цель при помощи лоцирования кильватерного следа. По всей видимости, на торпеде установлена система лоцирования кильватерного следа нового поколения, маловосприимчивая к средствам гидроакустического противодействия. Для стрельбы по подводным лодкам система самонаведения имеет активные гидролокаторы, способные "захватить" подлодку противника на расстоянии до 1200 метров. Вероятно, новейшая торпеда "Физик-2" имеет ещё более совершенную систему самонаведения. Также представляется вполне вероятным, что торпеда получила шланговую катушку вместо буксируемой. Как сообщается, общие боевые возможности данной торпеды сопоставимы с возможностями последних модификаций американской торпеды Mk-48.

Таким образом, ситуацию с "торпедным кризисом" в ВМФ России удалось переломить и возможно в ближайшие годы удастся оснастить все российские подводные лодки новыми универсальными высокоэффективными торпедами, которые существенно расширят потенциал российского подводного флота.

Павел Румянцев


УНИВЕРСАЛЬНАЯ ГЛУБОКОВОДНАЯ

САМОНАВОДЯЩАЯСЯ ТОРПЕДА УГСТ

UNIVERSAL DEEP-WATER HOMING TORPEDO UGST

14.07.2019


На Международном военно-морском салоне МВМС-2019 AО «НИИ мортеплотехники» представило в очередной раз универсальную глубоководную самонаводящаяся телеуправляемую торпеду УГСТ. Она предназначенная для поражения подводных лодок, надводных кораблей и стационарных береговых и морских сооружений, оснащена экономичным аксиально-поршневым двигателем, обеспечивающим дальность хода торпеды до 25 км при максимальной скорости до 50 узлов и до 50 км при скорости 40 узлов на глубинах хода до 500 м. Используемая в УГСТ двухканальная система самонаведения обладает высокой степенью помехозащищенности от различных средств гидроакустического противодействия и обеспечивает поражение цели с достаточной вероятностью.
Универсальная глубоководная самонаводящаяся торпеда УГСТ входит в состав торпедного вооружения подводных лодок (ПЛ) и надводных кораблей (НК).
Российский аналог торпеды УГСТ принят на вооружение и успешно эксплуатируются на ПЛ, АПЛ и НК российского ВМФ.
По комплексу характеристик торпеда УГСТ не уступает лучшим мировым аналогам, а по показателям «эффективность-стоимость» превосходит.
ВТС «Бастион»

UNIVERSAL DEEP-WATER HOMING TORPEDO «FIZIK»

30.06.2016


Все новые корабли и подводные лодки Военно-морского флота России до 2017 года полностью перевооружатся на новые торпеды типа «Физик», дальность которых в 2,5 раза больше стоящих сегодня на вооружении флота УСЭТ-80, сообщил РИА Новости в среду высокопоставленный военный источник.
В настоящее время на вооружении ВМФ РФ находятся торпеды УСЭТ-80 с дальностью стрельбы 18 километров.
«ВМФ России начал перевооружение на новые торпеды калибра 533 миллиметра «Физик-1″ с увеличенной дальностью поражения цели до 50 километров», - сказал собеседник агентства.
По его словам, при тех же габаритах торпеда имеет большую дальность, более мощную боевую часть и совершенную систему самонаведения.
По данным из открытых источников, длина новой торпеды – 7,2 метра, масса – 2200 килограммов при массе боевой части в 300 килограммов. В двигателе используется специально разработанное топливо вместо кислорода и воды.
РИА Новости

28.10.2016


Новая универсальная торпеда «Физик» сможет поражать корабли и подводные лодки противника на расстоянии до 50 километров.
Универсальная глубоководная самонаводящаяся торпеда «Физик» уже принята на вооружение, ее характеристики считаются на флоте уникальными. Стартовый пороховой заряд, установленный в камере сгорания, позволяет практически мгновенно нарастить мощность двигателя до максимума. В движение торпеду приводит малошумный водомет.
Боевая часть снаряда содержит до 300 килограммов взрывчатого вещества. Наведение выполняет активно-пассивная гидроакустическая система, которая распознает кильватерный след на расстоянии до полутора километров. Также есть система телеуправление торпедой с борта корабля до 30 километров при помощи кабеля.
Главная отличительная особенность «Физика» его модульная конструкция. На его основе может быть создано целое семейство торпед с различными характеристиками, которые легко комплектовать под ту или иную боевую ситуацию.
https://riafan.ru/


УНИВЕРСАЛЬНАЯ ГЛУБОКОВОДНАЯ САМОНАВОДЯЩАЯСЯ ТОРПЕДА «ФИЗИК»

Разработка «Физика» велась в ленинградском НИИ «Мортеплотехника» с 1986 года. В рамках нее был создан образец новой тепловой (парогазовой) дальноходной торпеды УГСТ (универсальная глубоководная самонаводящаяся торпеда).
Впервые торпеда УГСТ продемонстрирована в 2003 г. на морском салоне МВМС-2003 в г.Санкт-Петербурге.
533-миллиметровая торпеда УГСТ оснащена боевой частью весом 300 килограммов и предназначена для поражения кораблей и подводных лодок противника на дальности до 50 километров. Торпеда оснащена комбинированной системой акустического самонаведения, также допустимо телеуправление (с борта подлодки).
Энергосиловую установку УГСТ построили на основе аксиально-поршневого двигателя работающего на отлично зарекомендовавшем себя жидком однокомпонентном топливе. Вращающаяся камера сгорания является особенностью двигателя. Топливо подается плунжерным высоконапорным насосом.
Стартовый пороховой заряд, размещенный в камере сгорания, позволяет за короткое время наращивать мощность двигательной установки. Это особенно важно на начальном этапе хода торпеды. Движителем торпеды является уникальный малошумный водомет, соединенный напрямую с двигателем.
Основой архитектуры аппаратурного модуля УГСТ является инициирование единого перепрограммируемого вычислительного ядра на ее борту, которые объединяют информационные части бортовых систем торпеды в единое информационное пространство интегрированных систем управления.
УГСТ конструктивно включает в себя:
- аппаратурный модуль;
- зарядное боевое отделение;
- резервуарное отделение, имеющее отсек аппаратуры телеуправления;
- двигательная установка (силовое отделение);
- хвостовое отделение, в котором находятся рулевые устройства;
- катушку телеуправления и АЭРВД.
Существует две модификации торпеды УГСТ:
– для российских торпедных аппаратов, длина торпеды 7,2 метра;
– экспортный вариант для натовских торпедных аппаратов, длина торпеды 6,1 метра.
Серийное производство торпед УГСТ по состоянию на 2008 г. велось на заводе «Дагдизель» (г.Каспийск, Дагестан).

Торпеда «Физик» предназначена для поражения надводных кораблей и подводных лодок (универсальная). Двигатель АПД разработки НИИ «Мортеплотехника» прошел испытания в 1995 г.
21 марта2012 года на сайте госзакупок опубликован открытый тендер на техническое обслуживание торпед «Физик-1″ / изделие 2534 в ходе испытаний ПЛАРК «Северодвинск» пр.885. По условиям тендера предполагается до 25 ноября 2012 г. завершить испытания торпед с подводной лодки. Судя по всему в ходе испытания планируется использовать 6-7 торпед УГСТ / «Физик-1″, в т.ч. 2 торпеды с доработкой по программе расширенных испытаний. Работы с торпедами запланировалы Гособоронзаказом на 2012 г. Стартовая цена контракта по техническому обслуживанию и подготовке торпед – 96 млн. руб.
Российский флот принял на вооружение новую глубоководную самонаводящуюся торпеду «Физик», максимальная дальность стрельбы которой достигает 50 километров, об этом сообщил источник в Минобороны в апреле 2015 года. «В конце прошлого года после успешного завершения госиспытаний принята на вооружение новая глубоководная тепловая самонаводящаяся торпеда «Физик». Этой торпедой будут прежде всего вооружены все подводные лодки проектов 955 ["Борей"], 885 ["Ясень"] и их модификации, а по мере увеличения выпуска на них будут перевооружены и другие подлодки ВМФ», - отметил источник. Он добавил, что серийное производство торпеды уже началось. Источник также пояснил, что «Физик» заменит старую торпеду УСЭТ-80 дальностью 18 километров, принятую на вооружение еще в советское время, в 1980-е годы. «Торпеду УСЭТ-80 ранее получили и самые современные атомные подлодки, переданные флоту в последнее время, в частности первый «Борей» - «Юрий Долгорукий» и первый «Ясень» - «Северодвинск». Теперь они будут от нее избавляться», - подчеркнул собеседник.

ХАРАКТЕРИСТИКИ УГСТ:

Калибр - 534,4 мм
Длина - 7200 мм
Масса – 2200 кг
Масса БЧ – 300 кг
Скорость - 50 узлов
Дальность стрельбы - 40 км
Глубина - до 500 м
Глубина стрельбы с подлодки - до 400 м
Радиус реагирования ССН:
- по подлодке до 2,5 км
- по надводному кораблю до 1,2 км

Источники: ТАСС, Лента.ру, militaryrussia.ru, armyman.info и др.

В массовом сознании подводные лодки воспринимаются прежде всего как носители ракетного оружия. Ну, а что же торпеды? Не остались ли они в прошлом?

А если остались, тогда зачем на российский флот пошли серийные поставки торпед нового поколения «Физик»? Давайте разберемся в этом, исходя из самых общих соображений, диктуемых элементарной физикой.

Оружием, сделавшим подводную лодку полноценным боевым кораблем, была торпеда. Именно торпеды позволили крошечной пятисоттонной субмарине U-9 с архаичными керосиновыми моторами (эдакими керогазами, только газифицированное топливо шло не в горелки, а в газовый двигатель Отто) отправить 22 сентября 1914 года на дно сразу три британских броненосных крейсера водоизмещением в 36 000 тонн - HMS Aboukir, Cressy, Hogue.

Потери Королевского флота - 1459 человек - почти сравнялись с потерями у Трафальгара.

Цена плотной среды

И подводная лодка, и торпеды работают в среде с плотностью в тысячу раз выше, чем воздух, - в воде. Именно вода сделала крохотный подводный кораблик невидимым, что и позволило подойти на дистанцию выстрела, не опасаясь огня многочисленных пушек британских бронированных гигантов.

А еще именно вода с ее высокой плотностью обеспечила впечатляющую поражающую способность, которую 123-килограммовые боеголовки 45-сантиметровых торпед продемонстрировали на весьма прочных корпусах британских крейсеров. Взрыв в воде гораздо разрушительней взрыва в воздухе.

Да и подводная пробоина, в которую вливается вода, много страшнее надводных, овеваемых воздухом разрушений.

Но за все - в том числе и за скрытность, обеспечиваемую плотностью среды, - необходимо платить. Прежде всего затратами энергии, расходуемой на преодоление сопротивления воды. Это обуславливало крайне низкую, по сравнению со снарядами артиллерийских орудий, скорость торпед.

У тех C45/06, которыми была вооружена U-9, ход был 26 узлов при дальности стрельбы 3000 м и 34,5 узла при дальности стрельбы 1500 м. Кроме того, в плотной среде любой отклоняющий момент - асимметрия корпуса, тяги винта, удар волны - окажет несопоставимо более сильное воздействие, чем в воздухе.

Замеряющие давление воды гидростаты, управляя вертикальными рулями, удерживали торпеду на заданной глубине, не давая ей нырнуть вглубь, пройдя под днищем цели, или выскочить на поверхность.

Аналогичные возможности - стабилизацию на траектории - реактивные снаряды комплекса «Смерч» получили лишь в 1970-е, когда потребовалось поднять дальность стрельбы РСЗО с приемлемым рассеянием до 70 км. Такая вот разность в свойствах воды и воздуха.

На километр вглубь

Большую часть своей истории подводные лодки были вооружены торпедами и именно с их помощью вели боевые действия. Но потом на подводный флот пришли ракеты. Они позволяли сочетать скрытность субмарин с высокой скоростью и дальностью, которая обеспечивалась идущим в воздушной среде снарядом.

Стратегическим - таким как ракеты UGM-27 Polaris, стартующие из вертикальных шахт. Тактическим - предназначенным для борьбы с советскими подводными лодками: субмарины НАТО были оснащены запускаемыми из торпедных труб ракетоторпедами UUM-44 SUBROC.

Твердотопливный ракетный двигатель поднимал SUBROC из воды и под управлением инерциальной системы управления вел в воздухе к цели на дальности до 55 км - цель поражалась пятикилотонной ядерной боеголовкой W55.

К семидесятым годам прошлого века торпеда ушла на второй план. Она осталась «нишевым» оружием, предназначенным для борьбы с подводными лодками. И именно для этой цели была создана предыдущая отечественная торпеда - УСЭТ-80, универсальная самонаводящаяся электрическая торпеда, принятая на вооружение в 1980 году. Почему эта торпеда была электрической?

Дело в том, что в семидесятые годы предполагалось, что рабочая глубина перспективных подводных лодок США достигнет 1000 м. Именно под километровой толщей вод и должна была поражать их советская торпеда. Но километр глубины - это давление в сотню атмосфер. А любой тепловой двигатель предназначен для работы в окружающей среде с низким давлением.

Так что создателям УСЭТ-80 пришлось прибегнуть к электрическому двигателю, питаемому серебряно-магниевой батареей, которая активируется морской водой. Это обеспечивало работу на километровой глубине, позволяло торпеде развивать скорость 45 узлов, а при 43 узлах достигать дальности 18 км.

В плотной среде, где не работают оптика и радары, при тогдашнем уровне развития гидроакустических средств этого было вполне достаточно.

Вдогонку за субмариной

Но в реальности развитие техники западных ВМС шло не так, как виделось в 1970-е. Многоцелевые подводные лодки класса Seawolf, вступавшие в строй с 1997 года, имеют рабочую глубину 480 м и предельную 600 м.

У более дешевых и массовых лодок класса Virginia, поступающих на службу с 2004 года, предельная глубина ограничена 488 м. У германских субмарин класса U-212 предельная глубина - 350 м, а у их экспортной версии U-214, стоящей на вооружении ВМС Турции, - 400 м. Так что ни о какой работе торпед на километровой глубине сегодня и речи нет.

В настоящее время НИИ мортеплотехники (Санкт-Петербург) разработал УГСТ «Футляр», которая является усовершенствованной версией торпеды «Физик» и обладает сходными параметрами. Производятся УГСТ на ОАО «Завод «Дагдизель»» (Каспийск, Дагестан).

А вот ходят современные подводные лодки уважаемых партнеров быстро: Seawolf развивает скорость до 35 узлов. И, как легко понять, стрельба торпедой с ограниченным до 18 км запасом хода представляет собой трудную задачу, даже если принять во внимание возможности самонаведения торпеды УСЭТ-80, которая способна гнаться за вражеской субмариной по кильватерному следу или выходить на цель с помощью активно-пассивного гидролокатора.

Но какой бы изощренной ни была система управления, фундаментальные ограничения скорости и запаса хода накладывают свои ограничения на применение торпед по скоростным маневрирующим целям.

Например, окажись наша субмарина строго за кормой идущего полным ходом «Сивульфа», стрелять торпедой УСЭТ-80 вдогонку с дистанции 3−4 км не имело бы смысла: не хватит запаса хода торпеды, чтобы сократить расстояние до нуля. За час на ходу в 43 узла она сможет сблизиться с субмариной только на 14,8 км. Но аккумуляторов хватит менее чем на четверть часа…

УГСТ «Физик» принята на вооружение в 2015 году и устанавливается на подводные лодки проектов 885 («Ясень») и 955 («Борей»). На фото: АПЛ «Александр Невский» - второй корабль, построенный в рамках проекта 955.

Если бы торпеда имела бесконечную скорость или бесконечный запас хода - тогда бы она, установив контакт с целью, гарантированно поразила бы ее в радиусе действия или при скорости, хоть чуть-чуть уступающей скорости торпеды.

Но в реальности так не бывает, и поэтому важнейшей задачей стало повышение скорости и запаса хода новой отечественной торпеды УГСТ. А поскольку стало понятно, что нырять на километр торпедам не придется, то обратились к проверенному вековой практикой химическому топливу, более энергоемкому при той же массе.

Топливо XXI века

Двигательная установка торпеды «Физик» использует однокомпонентное топливо - примерно так же, как современные твердотопливные ракеты. Только в торпеде оно не твердое, а жидкое. Какое именно? Ну, наверное, мы не сильно ошибемся, предположив, что оно в общих чертах аналогично монотопливу Otto Fuel II, применяемому в торпедах стран НАТО.

Это топливо не имеет никакого отношения к газовому двигателю Отто - оно названо по имени изобретателя Отто Рейтлингера и состоит из пропиленгликоля динитрата (он же 1,2-пропандиол динитрат), стабилизированного 2-нитродифениламином и десенсибилизированного (потерявшего чувствительность к детонации) дибутилсебакатом.

Ну а для того, чтобы эту энергию извлечь, однокомпонентное топливо разогревается стартовым пороховым зарядом. Получившиеся газы идут в цилиндры аксиально-поршневого двигателя, где и происходит их сгорание.

Аксиально-поршневой - это двигатель, где цилиндры расположены по кругу параллельно, осями друг к другу, а вместо коленвала используется наклонная шайба. Когда-то он был изобретен для авиации, но сейчас прижился в торпедах.

Аксиальный двигатель нагружен малошумным водометным двигателем. Так что универсальная глубоководная самонаводящаяся торпеда «Физик» имеет скорость 50 узлов при дальности 50 км, что существенно расширяет тактику ее применения по сравнению с УСЭТ-80.

Как уверяют флотские, пуск «Физика» из современных торпедных аппаратов практически бесшумен, что исключает демаскировку атакующей лодки. На цель торпеду может направлять как система самонаведения, так и проводная система телеуправления, когда за целью следит гидроакустическая система подводной лодки, а команды торпеде передаются по оптоволоконному кабелю.

УГСТ «Физик»

Поскольку на лодке и размеры датчиков гидроакустической станции больше, и процессоры, обрабатывающие их данные, мощнее, такая схема применения дает лучшие, чем при самонаведении, шансы в дуэли с подводной лодкой противника.

Этому помогает и более высокая маневренность «Физика»: его рули после пуска выходят за контур торпеды (примерно так же, как раскрываются стабилизаторы ПТУР 9М111 «Фагот»), что обеспечивает большую эффективность управления в широком диапазоне скоростей.

А это нужно потому, что при телеуправлении - когда торпеда тащит за собой кабель или катушку с проводом - приходится уменьшать скорость торпеды, платя увеличением времени хода за скрытность.

Так что торпедное оружие становится более адекватным тем задачам, которые ставит XXI век. Оно может быть выпущено с больших, чем ракеты, глубин - до 400 м.

Оно имеет более низкий уровень демаскирующих факторов, прежде всего шума: торпеда деликатно выходит в жидкую среду, а ракета врывается туда с ударом горячих газов из двигателя, почти взрывом. Но конкретная тактика применения этого оружия - военная тайна, куда более серьезная, чем сведения о самом этом оружии…

Подпишитесь на нас

Несмотря на стремительное развитие ракетного противолодочного оружия, наблюдаемое в течение последних десяти лет, торпеды различных типов до сих пор остаются главным средством поражения подлодок и одним из самых действенных средств уничтожения надводных судов противника . Россия, как и прежде, занимает лидирующие позиции в области разработки торпедного оружия для вооружения подводных лодок и надводных кораблей.

Универсальная глубоководная самонаводящаяся торпеда (УГСТ) является одним из уникальнейших образцов российского торпедного оружия. Несколько лет назад производителем были получены документы, дающие право экспортировать это изделие. Торпеду УГСТ выставляли на двух Международных военно-морских салонах (МВМС) проходивших в Санкт-Петербурге.

Причем во время первого показа, в 2003 году, когда торпеду хотели впервые открыто представить широкому кругу специалистов, из-за каких-то проблем со спецслужбами УГСТ на второй день спрятали от зрителей, завернув ее в ковролин и перемотав скотчем. Данное обстоятельство вызвало настоящую сенсацию не только у зарубежных, но и у российских журналистов, пишущих на военно-техническую тему.

Однако и без этого «инцидента», похожего на кадры из плохого шпионского фильма, многие эксперты в области военно-морской техники вполне заслуженно уделяют этому образцу ВВТ повышенное внимание. Но теперь можно, не оглядываясь на компетентные органы, рассказать о УГСТ, которая является превосходным образцом торпедного оружия. Данная торпеда была разработана специалистами санкт-петербургского ФГУП «Научно-исследовательский институт морской теплотехники» и подмосковного ГНПП «Регион».

УГСТ - универсальная глубоководная самонаводящаяся , предназначенная для поражения и надводных кораблей противника. УГСТ может выпускаться из 533-миллиметровых торпедных аппаратов. Кроме того, торпеда является универсальной по носителю, то есть может стоять на вооружении как подлодок, так и надводных кораблей .
Существует две модификации торпеды УГСТ:
– для российских торпедных аппаратов, длина торпеды 7,2 метра;
– экспортный вариант для натовских торпедных аппаратов, длина торпеды 6,1 метра.

Совместимость аппаратуры носителя и бортовых систем торпеды производится программной настройкой системного блока во время привязки к определенному типу корабля . Причем для размещения универсальной глубоководной самонаводящейся торпеды на некоторых модернизируемых судах существует возможность поставки переходного пульта предстартовой подготовки, позволяющего вводить данные в торпеду перед выстрелом.

Российские специалисты в этом изделии смогли реализовать современную концепцию тяжелой торпеды. Был повышен интеллектуальный уровень бортовой аппаратуры торпеды, и достигнуты высокие тактико-технические характеристики, такие как глубина, дальность и скорость хода.

Основные характеристики УГСТ :
Калибр — 534,4 мм
Длина — 7200 мм
Масса – 2200 кг
Масса БЧ – 300 кг
Скорость — 50 узлов
Дальность стрельбы — 40 км
Глубина — до 500 м
Глубина стрельбы с подлодки — до 400 м
Радиус реагирования ССН:
— по подлодке до 2,5 км
— по надводному кораблю до 1,2 км

С тепловой пропульсивной системой ТПС-53 скорость торпеды может достигать 65 узлов, а максимальная дальность хода - 60 км. Кроме режима самонаведения по кильватерному следу, торпеда имеет режим управления по проводам (на 5…25 км, в зависимости от типа цели), и режим следования курсу (с заданным количеством колен и отворотов).

Важной отличительной особенностью данной торпеды является ее модульная конструкция. Это позволяет создавать целое семейство торпед, которые обладают многоуровневым потенциалом модифицируемости: от перепрограммирования аппаратуры в базовой модели до замены резервуарного отделения или двигателя. Такой подход дает возможность быстро комплектовать УГСТ под особенности конкретных условий боевого применения торпеды.

УГСТ конструктивно включает в себя :
— аппаратурный модуль;
— зарядное боевое отделение;
— резервуарное отделение, имеющее отсек аппаратуры телеуправления;
— двигательная установка (силовое отделение);
— хвостовое отделение, в котором находятся рулевые устройства;
— катушку телеуправления и АЭРВД.

Энергосиловую установку УГСТ построили на основе аксиально-поршневого двигателя работающего на отлично зарекомендовавшем себя жидком однокомпонентном топливе . Вращающаяся камера сгорания является особенностью двигателя. Топливо подается плунжерным высоконапорным насосом.

Стартовый пороховой заряд, размещенный в камере сгорания, позволяет за короткое время наращивать мощность двигательной установки. Это особенно важно на начальном этапе хода торпеды. Движителем торпеды является уникальный малошумный водомет , соединенный напрямую с двигателем.

Основой архитектуры аппаратурного модуля УГСТ является инициирование единого перепрограммируемого вычислительного ядра на ее борту, которые объединяют информационные части бортовых систем торпеды в единое информационное пространство интегрированных систем управления.

Российские конструкторы реализовали в УГСТ еще одно «ноу-хау» – двухплоскостные рули, которые выдвигаются за калибр торпеды после того как она выходит из торпедного аппарата . По расчетам инженеров, данная конструкция рулей позволяет существенно снизить шумность торпеды. Работа рулей также весьма эффективна и позволяет торпеде уверенно проходить трудный начальный участок пути после ее выстреливания из торпедного аппарата надводного корабля или подводной лодки.

Что касается боевой части торпеды (боевого зарядного отделения), то оно представляет собой отсек с вкладной капсулой, в которой размещается взрывчатое вещество. Разработано несколько модификаций боевого зарядного отделения, различающихся по массе и составу взрывчатого вещества, а также системе инициирования во время подрыва.

Головной отсек , в котором размещается аппаратурный модуль, расположен перед боевым отделением. Аппаратурный модуль включает системы самонаведения, управления движением, телеуправления и другие. Система самонаведения универсальной глубоководной самонаводящейся торпеды является активно-пассивной . Она включает плоскую приемно-излучающую антенную решетку, в которой регулируется сектор обзора и специально разработанные приборы активных многоканальных гидролокаторов.

Система самонаведения эффективно осуществляет поиск, обнаружение и захват вражеской цели с любой глубины. Также предусмотрена возможность атаки по кильватерному следу цели. Головная часть универсальной глубоководной самонаводящейся торпеды по своей форме отличается от остальных торпед. Она имеет затупленную форму с плоской стенкой, за которой установлена антенна ССН.

Все агрегаты и системы УГСТ прошли все лабораторные и стендовые отработки на специализированных испытательных комплексах НИИ морской теплотехники и НПП «Регион», которое недавно вошло в состав Корпорации «Тактическое ракетное вооружение». Во время натурных испытаний торпеды мобильный гидроакустический полигон (МГП) был использован в полной мере.

Мобильный гидроакустический полигон предназначен для записи и контроля траекторий движения торпед, а также уровня подводного шума во время проведения боевой подготовки флота, научно-исследовательских и заводских испытаний на акватории площадью до 100 квадратных километров и глубинах до 300 метров (при якорной постановке) или без ограничений (при безъякорной постановке). В состав оборудования МПГ входят до 36 радиоакустических буев со спутниковой навигационной системой и пульт управления с планшетом обстановки размещаемые на судне обеспечения или на береговом центре.

Для контроля местоположения судов, кораблей и летательных аппаратов используют передатчики УКВ-диапазона, которые связаны с навигационным оборудованием объектов. На планшете обстановки отслеживаются траектории целей и торпед, местоположения надводных и подводных средств обеспечения в режиме реального времени.

Методики обработки данных разработанные российскими специалистами сочетают в себе математические и эмпирические процедуры и позволяют использовать штатную ГАС стреляющего надводного корабля или подводной лодки. Гидрология полигона учитывается специально разработанной аппаратурой измерения вертикального распределения скорости звука и комплектом программ расчета звуковых полей в районе испытаний российской разработки.

Комплекс торпедного оружия с универсальной глубоководной самонаводящейся торпедой поставляется заказчику в следующей комплектации:
— универсальная глубоководная самонаводящаяся торпеда в практической и боевой комплектации;
— запасные части торпед;
— эксплуатационное оборудование, предназначенное для приготовления, проверки и ремонта торпед;
— системы и оборудование для тренировки и обучения корабельных боевых расчетов;
— береговой комплекс техобслуживания УГСТ.

Практическая торпеда предназначена для обучения личного состава . Данная торпеда получается путем замены боевого зарядного отделения практическим отсеком. Положительная плавучесть такой торпеды обеспечивается за счет неполной заправки топливного резервуара.

Создание торпеды УГСТ стало результатом процесса эволюции российского торпедного оружия, стало ответом на тенденции в развитии средств поражения надводных кораблей и подводных лодок. Это произошло благодаря совершенствованию гидроакустики, увеличению вычислительных возможностей бортовой радиоэлектронной аппаратуры, оснащению торпед системами телеуправления высокой эффективности, а также разработке специалистами принципиально новых тактических приемов боевого применения торпед в современных условиях ведения боевых действий на море с учетом возможности активного противодействия торпеде.

© 2024 siniy-kit.ru -- Спортивный портал - Синий кит