Восстановление фосфагенов (АТФ и КрФ). Атф - что это такое, описание и форма выпуска лекарства, инструкция по применению, показания, побочные эффекты Атф мышцы

Главная / LifeStyle

Вы для себя уяснили из предыдущей статьи, т.к. это очень важно. Теперь поговорим о том, как поддерживается движение миозинового мостика, откуда берется энергия для сократительных процессов в мышце.

Для всего нашего организма АТФ служит одним из основных источников энергии и мышечное волокно – не исключение. Напомню: – внутриклеточный источник энергии, поддерживающий все процессы, происходящие в клетке.

Как раз распад молекулы АТФ и протекает с выделением энергии , также в ходе распада выделяется ортофосфорная кислота, а АТФ превращается в аденезиндифосфат (АДФ).

При взаимодействии с нитью актина, головки миозиновых мостиков расщепляют молекулу АТФ, получая тем самым энергию для сокращения.

Однако следует понимать, что содержание «запасных» молекул АТФ в нашем организме невелико, поэтому для длительной работы мышц и, тем более, для интенсивных тренировок, нашему организму необходима энергетическая подпитка.

Восполнение энергетических ресурсов в мышце осуществляется тремя основными путями:

  1. Расщепление креатинфосфата. В ходе такой реакции, молекула креатинфосфата отдает свою фосфатную группу молекуле аденезиндифосфата (АДФ), в следствие чего АДФ снова превращается в АТФ, а креатинфосфат – в креатин.
    Однако такая энергетическая подпитка длится весьма ограниченное время, поддерживая энергетический баланс мышц лишь в самом начале их работы. Связано это с малым запасом креатинфосфата в мышечных клетках. Далее в работу включаются гликолиз и окисление в митохондриях.
  2. Гликолиз. В ходе данного химического процесса в мышце образуется две молекулы молочной кислоты – в результате распада молекулы глюкозы. Распад глюкозы происходит в при участии десяти специальных ферментов.
    Распад одной молекулы глюкозы способен пополнить энергетические запасы двух молекул АТФ. Гликолиз весьма быстро восполняет мышечные запасы АТФ, т.к. происходит без участия кислорода (анаэробный процесс).
    В мышечной ткани основной субстрат гликолиза – гликоген. Гликоген – сложный углевод, состоящий из разветвленных цепей единиц. Основная масса углеводов в нашем организме накапливается в виде гликогена, сосредоточенного в скелетной мускулатуре и печени. Запасы гликогена во многом определяют объемы нашей мускулатуры и энергетический потенциал мышц.
  3. Окисление органических веществ. Данный процесс происходит в при участии кислорода (аэробный процесс), также для его протекания необходимо присутствие специальных ферментов. Доставка кислорода занимает определенное время, поэтому данный процесс запускается после расщепления креатинфосфата и гликолиза.
    Окисление органических веществ осуществляется поэтапно: запускается процесс гликолиза, но еще несформировавшиеся молекулы молочной кислоты (молекулы пирувата) направляются в митохондрии для дальнейших окислительных процессов, в результате которых образуется энергия с выделением воды (Н2О) и углекислого газа (СО2). При помощи образовавшейся энергии формируется 38 молекул АТФ.
    Если в результате анаэробного распада глюкозы (гликолиза) восстанавливается 2 молекулы АТФ, то аэробный процесс (окисление в митохондриях) способен восстановить в 19 раз больше молекул АТФ.

Вывод: молекула АТФ – основной и универсальный энергетический источник для мышечной активности, но запасы АТФ в мышечном волокне малы, поэтому постоянно пополняются расщеплением креатинфосфата, гликолизом и окислением органических веществ в митохондриях.

Причем гликолиз и окисление – основные пути восстановления АТФ, и каждому из этих способов соответствует свой тип мышечного волокна. Об этом мы поговорим в статье .

Материалы данной статьи охраняются законом о защите авторских прав. Копирование без указания ссылки на первоисточник и уведомления автора ЗАПРЕЩЕНО!

Содержание

Аденозинтрифосфорная кислота (молекула АТФ в биологии) является веществом, вырабатываемым организмом. Это источник энергии для каждой клетки тела. Если АТФ вырабатывается недостаточно, то наступают сбои в работе сердечно-сосудистой и других систем и органов. В этом случае медики назначают препарат, содержащий аденозинтрифосфорную кислоту, которая выпускается в таблетках и ампулах.

Что такое АТФ

Аденозинтрифосфат, Аденозинтрифосфорная кислота или АТФ - это нуклеозидтрифосфат, который является универсальным источником энергии для всех живых клеток. Молекула обеспечивает связь между тканями, органами и системами организма. Являясь носителем высокоэнергетических связей, Аденозинтрифосфат осуществляет синтез сложных веществ: перенос через биологические мембраны молекул, мышечное сокращение и прочие. Строение АТФ – это рибоза (пятиуглеродный сахар), аденин (азотистое основание) и три остатка фосфорной кислоты.

Помимо энергетической функции АТФ, молекула нужна в организме для:

  • расслабления и сокращения сердечной мышцы;
  • нормальной работы межклеточных каналов (синапсов);
  • возбуждения рецепторов для нормального проведения по нервным волокнам импульса;
  • передачи возбуждения от блуждающего нерва;
  • хорошего кровоснабжения головного, сердца;
  • повышения выносливости организма при активной мышечной нагрузке.

Препарат АТФ

Как расшифровывается АТФ, понятно, но что происходит в организме при снижении ее концентрации, ясно не всем. Через молекулы аденозинтрифосфорной кислоты под влиянием негативных факторов в клетках реализуются биохимические изменения. По этой причине люди с дефицитом АТФ страдают сердечно-сосудистыми заболеваниями, у них развивается дистрофия мышечных тканей. Чтобы обеспечить организму необходимый запас аденозинтрифосфата, назначаются медикаменты с его содержанием.

Лекарство АТФ – это препарат, который назначают для лучшего питания клеток тканей и кровоснабжения органов. Благодаря ему в организме пациента происходит восстановление работы сердечной мышцы, снижаются риски развития ишемии, аритмии. Прием АТФ улучшает процессы кровообращения, снижает опасность возникновения инфаркта миокарда. Благодаря улучшению данных показателей, в норму приводится общее физическое здоровье, у человека повышается работоспособность.

Инструкция по применению АТФ

Фармакологические свойства АТФ – препарата схожи с фармакодинамикой самой молекулы. Лекарственное средство стимулирует энергетический обмен, нормализует уровень насыщения ионами калия и магния, понижает содержание мочевой кислоты, активизирует ионотранспортные системы клеток, развивает антиоксидантную функцию миокарда. Пациентам с тахикардией и фибрилляцией предсердий применение лекарства помогает восстановить естественный синусовый ритм, уменьшить интенсивность эктопических очагов.

При ишемии и гипоксии медикамент создает мембраностабилизирующую и антиаритмическую активность, благодаря свойству налаживать метаболизм в миокарде. Препарат АТФ благотворно влияет на центральную и периферическую гемодинамику, коронарное кровообращение, увеличивает способность сокращения сердечной мышцы, улучшает функциональность левого желудочка и сердечный выброс. Весь это спектр действий приводит к понижению количества приступов стенокардии и одышки.

Состав

Действующее вещество препарата – натриевая соль аденозинтрифосфорной кислоты. Лекарство АТФ в ампулах содержит в 1 мл 20 мг активного компонента, а в таблетках – 10 или 20 г на штуку. Вспомогательные вещества в растворе для инъекций – это лимонная кислота и вода. Таблетки содержат дополнительно:

  • безводный коллоидный диоксид кремния;
  • бензоат натрия (Е211);
  • крахмал кукурузный;
  • стеарат кальция;
  • моногидрат лактозы;
  • сахарозу.

Форма выпуска

Как уже упоминалось, выпускается медикамент в таблетках и ампулах. Первые упаковываются в блистер по 10 штук, продаются по 10 или 20 мг. Каждая коробка содержит 40 таблеток (4 блистерные упаковки). Каждая ампула 1 мл содержит 1% раствор для инъекций. В картонной коробке имеется 10 штук и инструкция по применению. Аденозинтрифосфорная кислота таблетизированной формы бывает двух видов:

  • АТФ-Лонг – препарат с более длительным действием, который выпускается в таблетках белого цвета по 20 и 40 мг с насечкой для деления с одной стороны и фаской – с другой;
  • Форте – лекарство АТФ для сердца в таблетках для рассасывания по 15 и 30 мг, которое показывает более выраженное действие на сердечную мышцу.

Показания к применению

Таблетки или уколы АТФ чаще назначают при различных заболеваниях сердечно-сосудистой системы. Поскольку спектр действия препарата широк, лекарственное средство показано при следующих состояниях:

  • вегето-сосудистая дистония;
  • стенокардия покоя и напряжения;
  • нестабильная стенокардия;
  • наджелудочковая пароксизмальная тахикардия;
  • суправентрикулярная тахикардия;
  • ишемическая болезнь сердца;
  • постинфарктный и миокардический кардиосклероз;
  • сердечная недостаточность;
  • нарушения сердечного ритма;
  • аллергический или инфекционный миокардит;
  • синдром хронической усталости;
  • миокардиодистрофия;
  • коронарный синдром;
  • гиперурикемия разного генеза.

Дозировка

АТФ-Лонг рекомендуется класть под язык (сублингвально) до полного рассасывания. Лечение осуществляется независимо от еды 3-4 раза/сутки в дозировке 10-40 мг. Терапевтический курс назначает врач индивидуально. Средняя продолжительность лечения – 20-30 дней. Более длительный прием доктор назначает по собственному усмотрению. Разрешается повторить курс через 2 недели. Не рекомендуется превышать суточную дозу выше 160 мг препарата.

Инъекции АТФ внутримышечно вводятся 1-2 раза/сутки по 1-2 мл из расчета 0,2-0,5 мг/кг веса пациента. Внутривенное введение препарата осуществляется медленно (в виде инфузий). Дозировка составляет 1-5 мл из расчета 0,05-0,1 мг/кг/мин. Проводятся инфузии исключительно в условиях стационара под тщательным контролем показателей артериального давления. Продолжительность инъекционной терапии составляет около 10-14 дней.

Противопоказания

Препарат АТФ назначают с осторожностью при комплексной терапии с другими лекарственными средствами, которые содержат магний и калий, а также с медикаментами, предназначенными для стимуляции сердечной деятельности. Абсолютные противопоказания к применению:

  • грудное вскармливание (лактация);
  • беременность;
  • гиперкалиемия;
  • гипермагниемия;
  • кардиогенный или другие виды шока;
  • острый период инфаркта миокарда;
  • обструктивные патологии легких и бронхов;
  • синоатриальная блокада и AV-блокада 2-3 степени;
  • геморрагический инсульт;
  • тяжелая форма бронхиальной астмы;
  • детский возраст;
  • гиперчувствительность к компонентам, входящим в состав лекарства.

Побочные действия

При некорректном применении лекарственного средства может возникнуть передозировка, при которой наблюдаются: артериальная гипотензия, брадикардия, AV-блокада, потеря сознания. При таких признаках необходимо прекратить прием препарата и обратиться к врачу, который назначит симптоматическое лечение. Побочные реакции возникают и при длительном использовании медикамента. Среди них:

  • тошнота;
  • кожный зуд;
  • дискомфорт в эпигастральной области и груди;
  • высыпания на коже;
  • гиперемия лица;
  • бронхоспазм;
  • тахикардия;
  • усиление диуреза;
  • головные боли;
  • головокружение;
  • ощущение жара;
  • усиление моторики желудочно-кишечного тракта;
  • гиперкалиемия;
  • гипермагниемия;
  • отек Квинке.

АТФ (аденозинтрифосфат) – универсальный источник энергии, снабжающий работающие мышцы энергией.

АТФ (аденозинтрифосфат) -> АДФ (аденозинфосфат) + энергия

АДФ (аденозинфосфат) – вещество, до которого распадается АТФ в результате мышечной работы. Вместе с АДФ высвобождается энергия используемая мышцами.

АТФ расходуется в течение 2 секунд интенсивной мышечной деятельности. Восстанавливается АТФ из АДФ. Рассмотрим основные системы восстановления (ресинтеза) АТФ.

Фосфатная система ресинтеза АТФ

Ресинтез АТФ происходит в результате взаимодействия высокоэнергетического вещества креатинфосфата (КрФ) и АДФ.

КрФ (креатинфосфат) + АДФ (аденозинфосфат) -> АТФ (аденозинтрифосфат) + креатин

Запасы КрФ иссякают после 6-8 секунд интенсивной мышечной работы.

Вся фосфатная система расходуется в течение 10 секунд (сначала АТФ, приблизительно за две секунды, затем КрФ приблизительно, за восемь секунд).

Восстанавливаются КрФ и АТФ после прекращения физической активности за 3-5 минут .

В тренировках фосфатной системы применяются непродолжительные мощные упражнения, направленные на увеличение силовых показателей длящиеся не более 10 секунд . Восстановление между упражнениями должно быть достаточным для ресинтеза АТФ и КрФ (3-5 минут ). Работа над увеличением запасов АТФ и КрФ вознаграждается способностью спортсмена показывать достойные результаты в упражнениях, длящихся до 10 секунд.

Кислородная система ресинтеза АТФ

Включается при работе на выносливость, снабжая мышцы энергией в течение длительного времени.

Мышечная деятельность снабжается энергией за счет химических процессов взаимодействия пищевых веществ (в большей степени углеводов и жиров, в меньшей – белков) с кислородом. Углеводы в организме откладываются в виде гликогена (в печени и мышцах) и способны снабжать мышцы энергией в течение 60-90 минут работы с интенсивностью близкой к максимальной. Снабжение мышц энергией за счет жира может достигать 120 часов .

Из-за меньшей требовательности к кислороду (на окисление углеводов уходит на 12% меньше кислорода по сравнению с окислением жира при равном потреблении энергии), углеводы более предпочтительное «топливо» при анаэробном тренинге.

Окисление жиров на аэробной тренировке происходит по следующей схеме:

Жиры + кислород + АДФ (аденозинфосфат) ->

Окисление углеводов происходит в два этапа:

-> Молочная кислота + АТФ (аденозинтрифосфат)

Молочная кислота + кислород + АДФ (аденозинфосфат) – > углекислый газ + АТФ (аденозинтрифосфат) + вода

Первая фаза окисления углеводов протекает без участия кислорода, вторая – с участием кислорода.

При умеренной нагрузке (пока потребляемого кислорода достаточно для окисления жиров и углеводов), когда молочная кислота не накапливается в мышцах, схема расщепления углеводов будет выглядеть так:

Глюкоза + кислород + АДФ (аденозинфосфат) -> углекислый газ + АТФ (аденозинтрифосфат) + вода

Лактатная система ресинтеза АТФ

В тот момент, когда интенсивность нагрузки достигает порога, когда аэробная система из-за нехватки кислорода не справляются с обеспечением мышц энергией, подключается лактатная система ресинтеза АТФ. Побочным продуктом лактатной системы является молочная кислота (лактат), которая накапливается в работающих мышцах в процессе аэробной реакции.

Глюкоза + АДФ (аденозинфосфат) -> лактат + АТФ (аденозинтрифосфат)

Накопление лактата проявляется болезненностью или жжением в мышцах и негативным образом влияет на работоспособность спортсмена. Высокие показатели молочной кислоты нарушают координационные способности, работу сократительного механизма внутри мышцы и как следствие влияют на координационные возможности в видах спорта требующих высокого технического мастерства, что уменьшает результативность спортсмена и повышает риск травмы.

Повышенный уровень лактата в мышечной ткани приводит к микроразрывам в мышцах и может являться причиной травмы (если спортсмен не достаточно восстанавливается), а также выступает причиной замедления образование КрФ и снижения утилизация жиров.

По материалам книги.

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.
Креатинфосфатный путь связан с веществом креатинфосфатом. Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.
Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой. Данный путь ресинтеза АТФ иногда называют креатикиназным.
Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.
Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.
Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.
Время развертывания всего 1 – 2 сек.
Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются

· небольшое время развертывания,
· высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 л.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750 – 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.
Время развертывания 20-30 секунд.
Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

· он быстрее выходит на максимальную мощность,
· имеет более высокую величину максимальной мощности,
· не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки:
- процесс малоэкономичен,
- накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.
Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.
Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1 – 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 – 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

Прежде чем мы описать систему MOVEOUT, я хочу, чтобы вы вообще понимали какие процессы происходят в мышцах при работе. Я не буду вдаваться в мельчайшие подробности, дабы не травмировать вашу психику, поэтому расскажу о самом важном. Что же, возможно многие не поймут этот раздел, но советую его хорошо изучить, так как благодаря нему вы поймете как работают наши мышцы, а значит поймете как их правильно тренировать.

Итак, основное, что нужно для работы наших мышц – это молекулы АТФ с которой мышцы получают энергию. От расщепления АТФ образуется молекула АДФ + энергия. Вот только запасов АТФ хватает в наших мышцах всего на 2 секунды работы, а далее идет ресинтез АТФ из молекул АДФ. Собственно, от типов процессов ресинтеза АТФ и зависит работоспособность и функциональность.

Итак, выделяют такие процессы. Они обычно подключаются друг за другом

1. Анаэробный креатинфосфатный

Главным преимуществом креатинфосфатного пути образования АТФ являются

  • малой время развертывания,
  • высокая мощность.

Креатинфосфатный путь связан с веществом креатинфосфатом . Креатинфосфат состоит из вещества креатина. Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой . Данный путь ресинтеза АТФ иногда называют креатикиназным, иногда фосфатным или алактатным.

Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.

Фосфатная система отличается очень быстрым ресинтезом АТФ из АДФ, однако она эффективна только в течение очень короткого времени. При максимальной нагрузке фосфатная система истощается в течение 10 с. Вначале в течение 2 с расходуется АТФ, а затем в течение 6-8 с - КФ.

Фосфатная система называется анаэробной, потому что в ресинтезе АТФ не участвует кислород, и алактатной, поскольку не образуется молочная кислота.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

2. Анаэробный гликолиз

По мере увеличения интенсивности нагрузки наступает период, когда мышечная работа уже не может поддерживаться за счет одной только анаэробной системы из-за нехватки кислорода. С этого момента в энергообеспечение физической работы вовлекается лактатный механизм ресинтеза АТФ, побочным продуктом которого является молочная кислота. При недостатке кислорода молочная кислота, образовавшаяся в первой фазе анаэробной реакции, не нейтрализуется полностью во второй фазе, в результате чего происходит ее накопление в работающих мышцах, что приводит к ацидозу, или закислению, мышц.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Время развертывания 20-30 секунд.

Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

  • он быстрее выходит на максимальную мощность,
  • имеет более высокую величину максимальной мощности,
  • не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки :

  • процесс малоэкономичен,
  • накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

1. Аэробный путь ресинтеза

Аэробный путь ресинтеза АТФиначе называется тканевым дыханием – это основной способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на молекулярный кислород, доставляемый в мышцы кровью, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез молекул АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ.

Кислородная, или аэробная, система является наиболее важной для спортсменов на выносливость, поскольку она может поддерживать физическую работу в течение длительного времени. Кислородная система обеспечивает организм, и в частности мышечную деятельность, энергией посредством химического взаимодействия пищевых веществ (главным образом, углеводов и жиров) с кислородом. Пищевые вещества поступают в организм с пищей и откладываются в его хранилищах для дальнейшего использования по необходимости. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Запасы гликогена могут сильно варьироваться, но в большинстве случаев их хватает как минимум на 60-90 мин работы субмаксимальной интенсивности. В то же время запасы жиров в организме практически неисчерпаемы.

Углеводы являются более эффективным "топливом" по сравнению с жирами, так как при одинаковом потреблении энергии на их окисление требуется на 12% меньше кислорода. Поэтому в условиях нехватки кислорода при физических нагрузках энергообразование происходит в первую очередь за счет окисления углеводов.

Поскольку запасы углеводов ограничены, ограничена и возможность их использования в видах спорта на выносливость. После исчерпания запасов углеводов к энергообеспечению работы подключаются жиры, запасы которых позволяют выполнять очень длительную работу. Вклад жиров и углеводов в энергообеспечение нагрузки зависит от интенсивности упражнения и тренированности спортсмена. Чем выше интенсивность нагрузки, тем больше вклад углеводов в энергообразование. Но при одинаковой интенсивности аэробной нагрузки тренированный спортсмен будет использовать больше жиров и меньше углеводов по сравнению с неподготовленным человеком.

Таким образом, тренированный человек будет более экономично расходовать энергию, так как запасы углеводов в организме небезграничны.

Производительность кислородной системы зависит от количества кислорода, которое способен усвоить организм человека. Чем больше потребление кислорода во время выполнения длительной работы, тем выше аэробные способности. Под воздействием тренировок аэробные способности человека могут вырасти на 50%.

Время развертывания составляет 3 – 4 минуты, но у хорошо тренированных спортсменов может составлять 1 мин. Это связано с тем, что на доставку кислорода в митохондрии требуется перестройка практически всех систем организма.

Время работы с максимальной мощностью составляет десятки минут. Это дает возможность использовать данный путь при длительной работе мышц.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный путь имеет ряд преимуществ:

  • Экономичность: из одной молекулы гликогена образуется 39 молекул АТФ, при анаэробном гликолизе только 3 молекулы.
  • Универсальность в качестве начальных субстратов здесь выступают разнообразные вещества: углеводы, жирные кислоты, кетоновые тела, аминокислоты.
  • Очень большая продолжительность работы. В покое скорость аэробного ресинтеза АТФ может быть небольшой, но при физических нагрузках она может стать максимальной.

Однако есть и недостатки.

  • Обязательное потребление кислорода, что ограничено скоростью доставки кислорода в мышцы и скоростью проникновения кислорода через мембрану митохондрий.
  • Большое время развертывания.
  • Небольшую по максимальной величине мощность.

Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью получена этим путем ресинтеза АТФ.

Примечание. Эта глава написана на основе учебника "ОСНОВЫ БИОХИМИИ СПОРТА"

© 2024 siniy-kit.ru -- Спортивный портал - Синий кит